
142 Int. J. Metadata, Semantics and Ontologies, Vol. 12, Nos. 2/3, 2017

Copyright © 2017 Inderscience Enterprises Ltd.

Change management and validation for collaborative
editing of RDF datasets

Manuel Fiorelli*, Maria Teresa Pazienza,
Armando Stellato and Andrea Turbati
Department of Enterprise Engineering,
University of Rome Tor Vergata,
Via del Politecnico 1,
00133 Roma (RM), Italy
Email: fiorelli@info.uniroma2.it
Email: pazienza@info.uniroma2.it
Email: stellato@uniroma2.it
Email: turbati@info.uniroma2.it
*Corresponding author

Abstract: The dynamic and distributed nature of the Semantic Web implies that datasets are often
the result of collective participation rather than isolated works. Change management, provenance
tracking and validation of changes performed by contributing agents are all requirements of systems
for collaborative dataset development. Different scenarios may as well require mechanisms to
foster consensus, resolve conflicts between competing changes, reversing or ignoring changes etc.
In this paper, we perform a landscape analysis of version control for RDF datasets, emphasising the
importance of change reversion to support validation. Firstly, we discuss different representations of
changes in RDF datasets and introduce higher-level perspectives on change. Secondly, we analyse
diverse approaches to version control. We conclude by focusing on validation, characterising it as a
separate need from the mere preservation of different versions of a dataset.

Keywords: change management; change validation; collaborative editing; RDF; resource description
framework; provenance tracking; version control; change representation; change reversion.

Reference to this paper should be made as follows: Fiorelli, M., Pazienza, M.T., Stellato, A. and
Turbati, A. (2017) ‘Change management and validation for collaborative editing of RDF datasets’,
Int. J. Metadata, Semantics and Ontologies, Vol. 12, Nos. 2/3, pp.142–154.

Biographical notes: Manuel Fiorelli, PhD is a Research Associate at the University of Rome Tor
Vergata, where he carries on research and teaching in the fields of Knowledge Representation
and Knowledge-based Systems. He complements his research activity on large-scale semantic
interoperability with an interest in the engineering challenges associated with the realisation of
software systems in his area of interest. He is author of about 20 publications on workshops,
conferences and journals in the fields of Semantic Web, Natural Language Processing and related
areas. He participated in the EU-funded project SemaGrow and in the W3C Community Group
Ontology-Lexicon. He is currently participating in R&D projects funded by the ISA2 programme
of the European Commission: PMKI and VocBench.

Maria Teresa Pazienza is Full Professor in the Enterprise Engineering Department at the
University of Rome Tor Vergata, and Head of the AI Research Group at Tor Vergata University
(http://art.uniroma2.it/). She coordinated for several years the NLP working group of the Italian
Association for Artificial Intelligence, is in the editorial board of a few International journals,
received for two times the IBM Faculty awards for her researches on natural language processing
and conceptual knowledge engineering. She is author or coauthor of more than 200 scientific
papers. Prof. Pazienza is member of several cooperation activities between the University of
Tor Vergata and national/international scientific institutions for jointly developing researches and
technologies. She is also involved in technology transfer activities for Italian companies. She is
currently involved in initiatives on Big Data.

Armando Stellato, PhD, is Researcher at the University of Rome Tor Vergata, where he carries
on research and teaching in the fields of Computer Programming, Knowledge Representation and
Knowledge Based Systems. He is author of more than 80 publications on conferences and
journals in the fields of Semantic Web, Natural Language Processing and related areas and has
been member of the program committees of more than 90 international scientific conferences and
workshops. His main interests cover Architecture Design for Knowledge Based Systems,
Knowledge Acquisition and Onto-Linguistic interfaces, for which he participated in several EU
funded projects (such as Crossmarc, Moses, Cuspis, Diligent, NeOn, INSEARCH, SCIDIP-ES,

 Change management and validation for collaborative editing of RDF datasets 143

AgInfra, SemaGrow) and international research initiatives, such as the W3C OntoLex Community
Group. He is currently leading – under a project funded by the ISA2 program – the development of
VocBench: an Application for Collaborative Management of RDF Vocabularies.

Andrea Turbati, PhD, is a Research Associate at the University of Rome Tor Vergata. His
research interests span across Knowledge Representation and Knowledge Based Systems. He is
author of ~20 publications in the Semantic Web area. During his Ph.D. he worked on ontology
learning and population from unstructured content. His Ph.D. thesis was about the design and
development of CODA (Computer-aided Ontology Development Architecture), an architecture
and a framework that extends the unstructured information management framework UIMA to
support the generation of RDF data. He is one of the developers of Semantic Turkey, a platform
for Knowledge Acquisition and Management, and VocBench (mainly covering its interaction
with Sematic Turkey) - a collaborative web-based, multilingual, editing and workflow tool that
manages thesauri, authority lists and glossaries using SKOS-XL. He has also contributed to the
EU-funded project SemaGrow.

1 Introduction

The Semantic Web (Berners-Lee et al., 2001; Shadbolt
et al., 2006) evolved into a global data space (Heath and Bizer,
2011) of interlinked datasets spanning a multitude of topics.
Practices for collaborative development of RDF datasets are
often justified by the need to subdivide the effort between
multiple contributors, often with different competencies in
order to cover specific parts of a larger domain or different
aspects of its representation (e.g. lexical, conceptual, logical).
Actually, Tudorache et al. (2008) argued that true
collaboration depends on the possibility for contributors to
discuss and work together to a certain extent. Indeed, the
effort required to reconcile the occasionally conflicting
perspectives of different contributors is an investment, the
return of which is more shareable content. In fact, potential or
even actual users may be involved in the development
process, thus raising ever more the chances of reuse and
interlinking.

Collaborative and iterative development processes for
dataset development clearly need methodologies and systems
to manage changes to a dataset. Our use of the expression
change management is not related to management science
(Wikipedia contributors, 2017), which is concerned with
problem-solving and decision making in managerial contexts,
while our focus is on defining, modelling and handling change
to RDF datasets in the context of collaborative editing
processes. Furthermore, it is necessary to consider that users
of a dataset have a different perspective than its developers.
Users are interested in changes between published versions
of a dataset. On the other hand, developers are interested in
the stream of contributions to a dataset, irrespectively of
whether they will be part of a new version of the dataset.
Developers certainly benefit from mechanisms to record
individual changes, discuss them and, depending on the
scenario, get a formal acceptance workflow. Conversely, a
continuously evolving dataset may be more difficult to use,
as resources can be deleted and, in general, their semantic
description can be changed in a backward incompatible
manner (e.g. an individual is turned into a class). Versioning
benefits those users who are interested in a stable access to

specific versions of a dataset. OWL 2 (W3C, 2009) supports
versioning of ontologies – which are identified through an
ontology IRI – by introducing the notion of version IRI that
can be used to identify, locate and, then, import a specific
version of an ontology in a series.

Datasets on the Semantic Web encompass both factual
and conceptual knowledge, as they can be classified as
ontologies, thesauri and other Knowledge Organisation
Systems (Hodge, 2000), other than mere data. In general,
this spectrum of possibilities is managed through a layered
approach: at the structural level, these differences are
simply ignored by treating these diverse sources as RDF
(W3C, 2004) datasets, while higher levels may deal with the
semantics of specific modelling languages and applications.

In this paper, we performed a landscape analysis of
the field of version control for RDF in the context of
collaborative processes for dataset development. The next
sections will introduce different facets of version control,
including provenance, change discussion, validation and
policy enforcement. We observed much interest in the
dynamics associated with the identification and efficient
storage of changes, possibly allowing querying different
snapshots of a dataset. We contended, however, that rejection
of changes is an equally, or perhaps more, important facet of
version control, which is supported to a different extent by
existing approaches. In fact, we observed that some notable
systems for collaborative development adopted a slightly
different perspective on the problem, focusing on changes
rather than snapshots of a dataset.

The rest of the paper is structured as follows. In Section 2,
we understand the notion of change in an RDF dataset and how
it can be characterised at different levels. In Section 3, we
survey existing systems and approaches for version control
of RDF datasets. In Section 4, we discuss change validation,
and contrast it to versioning, highlighting the commonalities
between them as well as the peculiarities of each. Finally, we
conclude in Section 5.

This article is an expanded and revised version of the
paper (Fiorelli et al., 2017) we presented at the 11th
International Conference on Metadata and Semantics
Research (MTSR’17). In addition to revising existing

144 M. Fiorelli et al.

content, we broadened the discussion of some topics, added
or replaced (clarification) examples, added the sections on
requirements for RDF version control and took into
consideration a few additional tools.

2 Understanding change

The term dataset has acquired different meanings within the
widespread literature and technical documentation about the
Semantic Web and Linked Open Data. In fact, this notion
was absent from the specification of RDF 1.0 (W3C, 2004),
which only defined the concept of graph as a set of triples.
Therefore, two RDF graphs are equal if their associated sets
of triples are equal, i.e. contain exactly the same triples
(order and multiplicity do not apply to sets). When two graphs
contain blank nodes (Hogan et al., 2014), we should in fact talk
about graph isomorphism, i.e. equality under an isomorphism
that deals with the nameless nature of blank nodes. The
SPARQL (W3C, 2008) query language complemented the
notion of graph with the concept of dataset, which is a
collection of graphs. This notion found its way into the
subsequent specification of RDF 1.1 (Cyganiak et al., 2014),
which defines a dataset as consisting of one unnamed graph
together with zero or more named graphs (each one being a
graph associated with an IRI or blank node).

However, in the VoID (Alexander et al., 2011)
specification the term dataset is used with a different meaning,
to denote “a set of RDF triples that are published, maintained
or aggregated by a single provider”. A dataset under this
definition has a “social” dimension, and therefore is different
from a purely mathematical construct, such as an RDF graph.
Furthermore, unlike RDF 1.1 and SPARQL, VoID does not
base the notion of dataset on the idea of multiple graphs.
However, these seemingly different definitions might be closer
(or at least share a strong overlap) in practice, since one of the
motivations of named graphs (Carroll et al., 2005) was exactly
tracking the provenance of RDF data, which is an important
facet of the social dimension of the Semantic Web.

Our use of the term dataset will be in between the
different meanings described above. Surely, we acknowledge
the social dimension of a dataset, as something that is
published and maintained by a defined social entity for some
purpose. However, we will not investigate social dynamics
such as what are the implications of a change in the
ownership of a dataset and will focus instead on factual
changes to its content only. With this regard, we will mostly
assume that a dataset contains a set of triples, but we will
occasionally differentiate between the different graphs that
compose a dataset.

From the perspective of the users of an editing
environment, the different editing operations provided by
the environment represent the different types of changes that
an RDF dataset can undergo. However, this viewpoint
produces an ever-evolving language of changes, which
should grow as new operations are added to the editor.
Moreover, it would be difficult to reason upon changes
expressed in that language: for example, it is impossible to

determine in general whether two changes conflict.
Furthermore, a change can be reversed only if the editor
provides the inverse of the operation that originated the
change (i.e. an operation that undoes the effects of the
latter). These difficulties are the result of the ad hoc nature
of the language used to express and manage changes.
Conversely, they disappear when changes to a dataset are
reduced to the addition or deletion of triples. This uniform
treatment of changes is often acknowledged to Kiryakov
and Ognyanov (2002), who claim that the triple is the
“smallest directly manageable piece of knowledge”.
Furthermore, they claim that a triple can only be added or
removed, but not modified, because the identity of a triple is
solely determined by the identity of its parts. In other words,
the RDF data model does not allow relating the deletion
of the triple :s :p :o1 to the addition of the triple :s :p :o2,
maybe as the change of a property value. Similarly,
renaming of a resource is not easy to determine. These
higher-level determinations can be based on the operations
offered by an editing environment (e.g. the change
originated from the operation to replace the value of a
property), the human judgement or, as observed by
Papavassiliou et al. (2009), some matcher.

At the semantic level, the change of an ontology is
similarly determined primarily as the addition or deletion of
axioms (Zaikin and Tuzovsky, 2013).

2.1 Blank nodes

Let us consider two datasets d1,d2, if we equate them to
their associated sets of triples and assume that they do not
contain blank nodes, that is to say 1 2,d d IRI IRI

 IRI LITERAL , their difference can be computed by

subtracting them as sets. By assuming that d1 and d2 are
two subsequent versions of the same dataset, we shall define
the added triples 2 1Δ \add d d and the removed triples

1 2Δ \del d d .

Blank nodes (Hogan et al., 2014) complicate the matter
significantly, especially for what concerns the representation of
a change (Berners-Lee and Connolly, 2001): blank nodes in
fact behave like existentially quantified variables, and as such
can be considered like bound variables, which can be renamed
at will. In fact, blank nodes should be considered unnamed
nodes. Nonetheless, concrete syntaxes and programmatic APIs
for RDF usually provide blank nodes with a local identifier,
which can be changed each time the dataset is loaded into
memory or serialised back to a file.

The need for blank node identifiers in RDF syntaxes
arises from the necessity to linearise a model such as RDF
that is nonlinear in nature: the purpose of blank node
identifiers is to unify all the occurrences of the same blank
node in different triples.

Let us consider some examples in the Turtle syntax. In
the example below, a pair of square brackets ([]) introduces
a fresh new blank node (without the burden of assigning a
local identifier to it), the properties of which are represented
as a predicate object list

 Change management and validation for collaborative editing of RDF datasets 145

[] rdfs:label “a blank node”@en ;

 rdfs:comment “a blank node is …”@en

.

Similarly, a predicate object list can be written inside the
pair of square brackets, a feature which is particularly useful
when the blank node itself is the object of a triple, such as in
the following example:

ex:SelfSustaining rdfs:subClassOf [

 a owl:Restriction ;

 owl:onProperty ex:sustain ;

 owl:hasSelf true

] .

When a blank node occurs as the object of two triples, there
is no choice but to use a blank node identifier, like in the
example below:

ex:john foaf:knows _:aBnode .

ex:alice foaf:knows _:aBnode .

These identifiers are scoped to the RDF document in which
they occur, so the situation is not much better than in the
previous examples using the syntax [].

The instability of blank node identifiers hurts our ability
to compare datasets via set differences. Let us consider the
following dataset consisting of a single triple:

 _:b1 rdfs:label “hello” .

If a triple is added to the previous dataset, a new
serialisation is produced. Since blank nodes have only local
scope, new local identifiers are generated:

_:b2 rdfs:label “hello” .

_:b2 rdfs:label “world” .

Völkel and Groza (2006) observed that a conservative
algorithm for comparing RDF datasets never equates
two blank nodes from different files. Formally, 1 2,d d

 IRI BNODE IRI IRI BNODE LITERAL , such

that 1 2blankNodes d blankNodes d , where blankNodes

is a function retuning the set of blank nodes mentioned in an
RDF dataset.

In our case, the conservative difference consists of a
triple deletion and two triple additions. In other words,
when we compare two versions of a dataset, the presence of
blank nodes may force us to consider larger than necessary
differences, which do not capture the actual evolution of the
dataset. In the case above, the conservative algorithm
suggested to us that the dataset was completely replaced
with new content, while a more concise and possibly more
accurate interpretation is that an individual triple has been
added to the description of the blank node. However, the
biggest problems occur when we want to represent the
changes themselves, for communicating them, and eventually
applying them to another copy of the dataset. Indeed, the
assertion ‘add triple _:b1 rdfs:label “world”’ is not well-

defined, unless we assume that _:b1 will be the local
identifier of the blank node at the time the change is applied.

In fact, there are a few circumstances in which we can
safely mention blank nodes:

 changes are stored together with the data (e.g. in a
separate named graph), thus the coreference of blank
nodes will be always preserved.

 non-standard options found in most RDF parsers and
writers are used to preserve blank node identifiers.

In the general case, Berners-Lee and Connolly (2001)
observed that the presence of blank nodes turns the task of
comparing two RDF datasets into a problem of graph
isomorphism. Sequence comparison is notoriously based on
the idea of finding a minimal edit script that transforms
a sequence into another. Similarly, dataset comparison
can be based on the problem of maximum common subgraph
isomorphism.

However, if our goal is to represent a change per se, we
shall circumvent the nameless nature of blank nodes and
identify them by relying or even introducing some identifying
information (Seaborne and Davis, 2010). For example, the
semantics of an ontology allows to uniquely identify a blank
node through a chain of properties (inverse functional or
functional). In the Delta (Berners-Lee and Connolly, 2001)
ontology, this is accomplished by replacing blank nodes with
variables that are unified with the appropriate nodes in the
source graph by matching a sort of context pattern. Similarly,
Völkel and Groza (2006) suggest to enrich blank nodes with
an inverse functional property holding a unique identifier
(e.g. a UUID). Another possibility is to avoid the use of blank
nodes altogether, by replacing them with globally unique IRIs
(i.e. Skolem IRIs). Indeed, the preference for IRIs over
blank nodes (and literals) is a best practice in the context of
Linked Data (Berners-Lee, 2006), aiming at a network effect
through the use of global identifiers. Under this perspective,
blank nodes should be mostly used as intermediate
nodes in complex structures, e.g. RDF collections and class
descriptions.

Auer and Herre (2007) follow a different approach, by
constraining the granularity of changes: it is not possible to
add/remove individual triples about a blank node, but blank
nodes can only be destroyed and recreated as a whole. To
that purpose, they introduce the notion of atomic graph,
subsequently used to define positive and negative changes.
A graph is said to be atomic if it can’t be subdivided into
two graphs the blank nodes of which are disjoint. A ground
graph (i.e. without blank nodes) is atomic if and only if it
consists of a single statement. A negative atomic change
(deleted triples) is an atomic graph that includes every triple
that affects a given blank node, and this must hold for any
other blank node introduced transitively. In other words, a
negative atomic change identifies relevant blank nodes
through a syntactic context consisting of every statement
related to those nodes. A positive atomic change (added
triples) is an atomic graph that never mentions blank nodes

146 M. Fiorelli et al.

already in the dataset. We illustrate this approach via an
example. Let us consider the following axioms, stating that
a wine has a maker and a grapevine:

ex:Wine a owl:Class ;

 rdfs:subClassOf _:c1 ;

 rdfs:subClassOf _:c2

.

_:c1 a owl:Restriction ;

 owl:onProperty ex:maker ;

 owl:minCardinality 1

.

_:c2 a owl:Restriction ;

 owl:onProperty ex:grapevine ;

 owl:minCardinality 1

.

Suppose that we want to update the ontology above to use a
qualified number restriction telling that the maker of a wine
is an ex:Winery. With respect to the graph above, we would
like to:

 remove the triple _:c1 owl:minCardinality 1

 add the triples _:c1 owl:minQualifiedCardinality 1 and
_:c1 owl:onClass ex:Winery

The triple deletion is not atomic, because the dataset contains
other statements where _:c1 occurs. Following Auer and
Herre, we have to include those statements in a negative
atomic change, which essentially deletes the class axiom and
the property restriction as a whole. Accordingly, the addition
of two triples is no longer sufficient, because the class axiom
shall be recreated from scratch. The end result is the
compound change below consisting of a negative atomic
change followed by a positive atomic change:

(

 [NegativeAtomicChange] {

 ex:Wine rdfs:subClassOf _:c1000 .

 _:c1000 a owl:Restriction ;

 owl:onProperty ex:maker ;

 owl:minCardinality 1

 .

 }

 ,

 [PositiveAtomicChange] {

 ex:Wine rdfs:subClassOf _:c2000 .

 _:c2000 a owl:Restriction ;

 owl:onProperty ex:maker ;

 owl:minQualifiedCardinality 1 ;

 owl:onClass ex:Winery

 .

 }

)

In the negative change, we deliberately used a blank node
identifier, _:c1000, that does not occur in the source dataset.
The blank node _:c1 is chosen, because if we equate them,
then the negative change includes every statement in the
source graph about _:c1. Clearly, _:c2 can’t be picked,
because the negative change does not agree on the value of
the property owl:onProperty (ex:maker vs ex:grapevine).
The identified subgraph in the source dataset is removed,
and replaced with the triples in the positive atomic change.
Notably, these triples can’t mention the previous blank node
(i.e. _:c1000), but instead they shall introduce a new one
(i.e. _:c2000). Actually, there would be no point in insisting
on recreating the same blank node, because the negative
change removed any mention of it from the source graph.

2.2 Representing changes in RDF

RDF is a compelling choice for the representation of
changes to an RDF dataset. Actually, we should distinguish
two complementary uses:

 represent metadata about changes

 represent the content of a change (i.e. the actual
modification of the dataset)

Regarding the first point, RDF is particularly convenient
because of its support to the simultaneous use of multiple
vocabularies. Therefore, it is possible to combine different
vocabularies to describe diverse facets of a change.
Moreover, the description of a change can be based on
widespread vocabularies, which can be used to record the
creator of a change, the instant it was issued (at the desired
resolution), the resources it affects or a textual message
describing the change and its motivation. Secondly, the
adoption of RDF to describe the changes to datasets allows
reusing the same tools and methodologies already applied to
data, while also enabling interesting scenarios in which the
description of a change references another resource on the
Semantic Web. Let us assume, for example, that the creator
of a change is represented with resources in the knowledge
base of an organisation. Leveraging background knowledge
about people in the organisation, it is possible to find
changes the creators of which work in a given department.
Actually, search criteria can be arbitrarily complex, since
the SPARQL query language enables ad hoc searches.

After discussing the use of RDF to represent metadata
about changes, we report on different approaches to record
their content. In Section 2, we have shown that a change can
be conveniently reduced to the addition and removal of
triples. Therefore, the crux of the problem lies in the
representation of triples and their binding to the change that
introduced or removed them. Following Seaborne and Davis
(2010), we review different approaches, concluding that
reification is generally inefficient and that there is a need for
some construct to explicitly represent graphs.

The Delta ontology can be used in conjunction with N3
(Berners-Lee and Connolly, 2011) (a superset of RDF), to

 Change management and validation for collaborative editing of RDF datasets 147

compactly represent changes, through the possibility to quote
graphs and use them as components of a triple. Additionally,
variables can be used to select a resource based on some
identification property (see Section 2.1).

In the following example, we use the Delta ontology to
represent that the approximate position of something identified
by the mailbox someone@example.org changed from Lazio
(an administrative region of Italy) to Rome (the capital of Italy
and a city located in Lazio).

@prefix dbr: <http://dbpedia.org/resource/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/ > .

{ ?x foaf:mbox <mailto:someone@example.org> }

 diff:deletion {

 ?x foaf:based_near dbr:Lazio

 } ;

 diff:insertion {

 ?x foaf:based_near dbr:Rome

 } .

The change above can be represented similarly through a
SPARQL 1.1 update:

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX foaf: < http://xmlns.com/foaf/0.1/ >

DELETE { ?x foaf:based_near dbr:Lazio }

INSERT { ?x foaf:based_near dbr:Rome }

WHERE { ?x foaf:mbox <mailto:someone@example.org> }

The example regarding the use of the Delta ontology, as well as
its translation as a SPARQL 1.1 update aren’t really based on
RDF.

An alternative approach is to use standard RDF reification
to represent added and removed triples as resources
(e.g. instances of the class rdf:Statement). Different variations
of this approach arises as diverse mechanisms are used to
group reified statements and connect them to the resource
representing a change. Specifically, the statements can be
linked to the change individually, or they can be grouped into
an RDF collection, container or other resource. Furthermore,
the distinction between addition and deletion can be
encoded in the name of the linking property, or in different
classes (of statements and groups, respectively). Reification
isn’t space efficient, because we need at least three triples to
reify a statement (for its subject, predicate and object) plus a
triple to link the reified statement to the change or to a
grouping resource (e.g. the group of added triples and the
group of removed triples). In the latter case, other triples are
required to link the groups to the change. Furthermore,
reified triples are difficult to read in a serialised RDF
document.

Recently introduced in RDF 1.1 (but long supported by
major triples stores), named graphs can be used in place of
standard reification: added and removed triples are asserted
in two different named graphs, which are then related to a
resource representing the specific change.

Unfortunately, named graphs are quite weak as an isolation
mechanism: for example, inference and SPARQL queries
(by default) are computed over all graphs. Moreover, there

could be interoperability problems with general-purpose RDF
management systems, which often rely on named graphs for
other purposes (e.g. to store imported ontologies). A solution to
these problems may be found in a hybrid approach (Cassidy
and Ballantine, 2007) combining named graphs with reification
(which notoriously does not entail the assertion of a triple).
Another option is to save changes in a separate triple store, so
that inference/querying problems can be simply ignored.
Another opportunity is an explicit support from triple stores,
which should implement quintuples including a component for
tracking the lifecycle of the associated quadruple (i.e. a triple
plus a graph name).

2.3 Higher-level changes

So far, we have characterised a change to a dataset in terms of
the triples it adds or removes. Additions and deletions of
triples can be understood as part of the same change, or they
can be modeled as separated positive and negative changes,
which can be composed into a single complex change.
Several works (Noy et al., 2006; Auer and Herre, 2007)
suggest that changes can be grouped hierarchically, usually
to reflect some higher-level change. Specifically, Auer
and Herre first introduce the notion of atomic change
(see Section 2.1), and then define (general) changes inductively
as sequences of changes. The grouping of changes can be
based on the transactional boundaries of an application or the
constructs found in a modeling language. For instance, the
creation of a collection is a compound change, composed by
several lower-level changes for the creation of the resources
and the links necessary to the representation of the collection.

In a certain sense, we are adopting a higher-level
perspective that is more specifically bound to the modelling
vocabulary at hand. Thus, not only we group together
changes by differentiating between levels of granularity, but
we also recognise different types of changes. For instance, if
a dataset encodes an OWL ontology, we may recognise
changes such as “addition of a class”, “merging of two
classes”, and so on. Auer and Herre (2007) suggest the
classification of composite changes with respect to ontology
evolution patterns. These patterns are associated with data
migration algorithms, which serve two purposes. On the one
hand, they precise the intention of a change to an ontology in
terms of the desired changes to the facts. On the other hand,
downstream users of an ontology are facilitated in the
adoption of a newer version, since they can use the migration
algorithms to change the instances they have already
described. The ChAO ontology (Noy et al., 2006) is similarly
based on the classification of changes to an ontology, but it
does not register the affected triples. Klein et al. (2002) use a
set of rules to translate low-level triple changes to higher-
level changes specific for ontology versioning. Papavassiliou
et al. (2009) are similarly concerned with higher-level
changes, although their focus is limited to RDF/S knowledge
bases. These authors define a language of changes, which
should be concise, intuitive and support the unambiguous
interpretation of low-level triple changes. They also define an
efficient algorithm to recognise such changes starting from
the low-level changes. Both Klein et al. and Papavassiliou

148 M. Fiorelli et al.

et al. propose a divisive approach, while somehow symmetric
to the aggregative one of Auer and Herre.

We observe that this higher-level perspective over change
has two main benefits. From an intellectual perspective,
it is certainly easier to understand the intention of a change,
when the purpose of low-level triple modifications has been
decoded against a classification of changes. Additionally, it
allows searching and filtering changes for different purposes:
e.g. to look only at terminological changes, rather than to
taxonomical ones. Some scenarios may even require that
different types of changes can be proposed and approved by
people with different roles.

Papavassiliou et al. (2009) made the interesting observation
that a high-level change may have a condition, consisting of
unchanged triples that must be asserted in order for the change
to be defined. For instance, changing the domain of a property
:p from :Male to :Person, can be understood as the higher level
change Generalize_Domain(p, Male, Person), only if the
original dataset entails that :Male is a subclass of :Person.

3 RDF version control

In the previous section, we discussed the notion of change
in an RDF dataset, and how changes can be represented in
an economical, robust and intuitive way. However, manual
sharing and application of changes require much diligence
and are impractical at scale, especially if it is desirable to
guarantee a globally consistent history of a dataset.

There is thus a need for methodologies and tools that
support the proper management of changes and versions of
a dataset. Most works in this area are clearly inspired by
version control systems in the software development domain.
Unsurprisingly, we observed a change in the referenced
systems, from (nowadays) legacy systems such as CVS
(http://www.nongnu.org/cvs/) and those losing hype, as in the
case of Subversion (https://subversion.apache.org/), to current
ones such as GIT (https://git-scm.com/). We also observed an
approach (Cassidy and Ballantine, 2007) inspired by Darcs
(http://darcs.net/), the distinguishing feature of which is the
focus on changes rather than snapshots. These systems
transitioned from centralised architectures to decentralised
ones, a trend that is only marginally reflected in the relevant
works in the area of Semantic Web. In fact, even in the
software development world, distribution is exploited to a
limited extent, since most development workflows depend
on a centralised repository as the single source of truth
about the history of a project.

In the domain of RDF evolution, Kiryakov and
Ognyanov (2002) observed that an RDF version control
system should serve two classes of stakeholders: dataset
developers and users. As claimed in the introduction, these
two groups have different requirements on the system.
These requirements have been collected from the relevant
literature and in particular from the work of Noy et al.
(2006).

3.1 Requirements for dataset developers

The development of a dataset, especially in collaborative
settings, clearly benefits from a record of individual changes
and intermediate (unpublished) versions of a dataset. This
functionality can be provided by a standalone system or
embedded in a (collaborative) editor. There could be different
development workflows, and the system may record changes
or temporary versions. The acceptance of changes can be
subjected to human validation, and it may also undergo
other levels of policy enforcement.

3.1.1 Embedded vs. standalone solution

An RDF editor can manage the version control system on
behalf of the user, whose degree of control can be limited
through the enforcement of policies based on other
dimensions, e.g. depending on the granularity, each action
can be logged as-is, or the user can be allowed to commit a
group of actions as a cohesive unit of work. At the opposite
end of the spectrum, a standalone solution is only concerned
with the management of changes and possibly of versions.

3.1.2 Granularity

When the version control system is embedded inside an
editor, user activity can be continually recorded, at the level
of detail dictated by the specific application. On the other
end, the system may only allow users to save a snapshot of
the dataset. The simplest implementation amounts to a sort
of export functionality. A slightly more complex approach
is a periodic backup facility operating in the background.

3.1.3 Synchronous vs. asynchronous workflow

In a synchronous workflow, all contributors share the
same workspace, so that changes performed by anyone
are immediately visible to the others. Alternatively, the
contributors can work on independent copies of the dataset,
while their contributions are merged asynchronously. A version
control system may also support separate development lines,
which are called branches. The synchronous workflow is
typical of many centralised collaborative editing environments,
since it may be inconvenient to allocate different workspaces to
each contributor. Moreover, the synchronous workflow
promotes the practice of continuous integration, while
in the asynchronous scenario it depends on how frequently
contributions are merged. Continuous integration is a risk-
reduction practice, since conflicts between individual
contributions can be discovered early on.

3.1.4 Undo of individual changes vs. checkpoint
restoration

Let us consider the following evolution scenario in which
three classes, in order A, B and C, are added to a dataset. A
pair of import/export facilities only allows to restore the
state of the dataset after each addition, namely {A,B,C},

 Change management and validation for collaborative editing of RDF datasets 149

{A,B}, {A}. It is not possible to just undo the addition of the
class B, leaving the dataset into the state {A, C}. In fact,
checkpoints are sufficient to achieve that goal, but we need
an additional support to compute the differences between
different versions and check whether individual changes
can be discarded without negative consequences on other
changes.

3.1.5 Tagging

This is the ability to give a name to a particular snapshot of
a dataset. This feature eases the reference to meaningful
states of the dataset.

3.1.6 Validation

It is not really a requirement on the version control system, but
a common usage scenario. Specifically, validation is associated
with an explicit approval workflow that is executed in order to
accept and consolidate proposed changes.

3.1.7 Policy enforcement

It may be interesting to enforce some access control rules,
i.e. establishing who can modify which portion of the
dataset. With respect to a dataset about the activities of an
organisation, some access rules may limit the possibility to
add/remove personnel to members of the HR department,
while only project managers could be allowed to update the
status of the project they are responsible for. The above can
be generalised into the possibility to enforce any policy
upon the suggestion of a change. For instance, in the
context of a multilingual dataset, we may enforce different
requirements on the creation of a new concept: i) a label is
provided for each supported language, ii) a label is provided
for at least two supported languages, etc.

3.1.8 Communication

The system should foster communication, e.g. to describe a
change, to discuss it or even to participate in a voting or
other consensus-forming activities.

3.2 Requirements for dataset users

Users of a dataset have a rather different perspective than
developers, because users are only interested in the
published versions of the dataset, rather than in arbitrary
snapshots produced by the development process.

3.2.1 Published versions

It should be possible to reference the latest version of a dataset,
as well as to obtain the preceding and subsequent versions of a
given version. Usually, the published versions are only a small
subset of the ones produced by the development process,
therefore users have a much coarser grained perspective than
maintainers have. While developers can reasonably reference
any intermediate state of the dataset, users benefit from tags
that record the released versions.

3.2.2 Lines of backward compatibility

From a user’s perspective, a dataset evolution is much more
linear than it appears to maintainers. Branching and merging
are usually out of the scope of end users, who primarily
perceive the evolution of a dataset as a temporally ordered
sequence of published versions. In fact, branches could be
introduced because of a non-backward compatible change,
which effectively starts a new line of backward compatible
development.

3.3 Analysis of existing RDF version control systems

We have surveyed some works on version control for RDF
datasets, analysing their approaches and, when appropriate,
establishing connections or drawing comparisons.

Kiryakov and Ognyanov (2002) propose a unified
framework encompassing change-tracking, access-control and
metadata management. These authors are often acknowledged
for having established the idea that triples are the unit of
management. Each edit of the data is individually registered,
and specific states of the dataset can be tagged as versions.
Individual versions, resources and statements can be
described via metadata, at least ideally represented in RDF.

The dataset is associated with an update counter, which
is incremented monotonically upon each edit, establishing a
logical clock. This counter is used to annotate each triple
with its creation and deletion time, making it possible to
identify the triples that were valid during a given interval.

When the dataset is persisted in a relational database,
the metadata about triples can be recorded efficiently, by
extending the representation of the dataset itself. For
example, let us assume that statements are stored in a table
with columns for their subject, predicate and object. In this
case, it is sufficient to add a few columns to that table, in
order to store the creation and deletion time of triples as
well.

Deleting a triple sets its deletion time, but does not remove
it from the repository, whose size can only increase
monotonically. However, the growth of the repository can be
limited, by purging the history prior to a certain state. The
system manages automatically the versioning of imported
(read-only) data, as well as inferred triples, by applying
techniques of truth maintenance to decide their validity
interval. The system, implemented over the OpenRDF Sesame
middleware for RDF, now Eclipse RDF4J (http://rdf4j.org/), is
intended to support anything that can be encoded in RDF, from
factual data to ontologies. It is possible to branch a dataset, but
this is quite an onerous operation based on cloning the entire
repository.

Völkel and Groza (2006) present SemVersion, a full
version control system for RDF (implemented as a pure
Java library) that supports all operations commonly found in
a version control system, such as checking out, branching,
merging and computing differences between states. They
represent a change via the TripleSet ontology, which relies
on reification to represent added and removed triples. A
change contains a link to the preceding one in the branch,
and the sequence of changes leading to a given state can be

150 M. Fiorelli et al.

seen as a delta-compressed representation of that state. This
representation is used to compute the difference between
two arbitrary states, and to merge two branches. Merging a
branch into another fails when the former adds a triple about
a resource that was present in the most recent common
version of the two branches and that was removed in the
receiving branch.

Blank nodes are explicitly supported through the enrichment
mechanism described in Section 2.2. Like Kiryakov and
Ognyanov, Völkel and Groza focus on RDF at the structural
level, on top of which another semantic level can be defined.
This further level is characterised by a semantic difference
function, which compares two states accounting for inferences
enabled by an ontology language. Different notions of semantic
conflict can be defined, in addition to the structural level
conflict between additions and deletions.

Cassidy and Ballantine (2007) describe a version control
system for RDF based on the theory of patches. Starting
from an empty dataset, a given version of the dataset can be
obtained by applying a sequence of patches (the authors’
name for change): 1 2c n nc c V . Each patch adds or

removes triples, and may be conditioned on unchanged
triples. The implementation instruments the Redland
(http://librdf.org/) RDF API to intercept any editing
operation over the triple store containing the working graph.
The patches are stored in a dedicated quad-store, in which
each patch is stored in a separate named graph, while
individual triples are represented as reified triples. The use
of a separate dataset for patches means that the performance
of read-only operations over the working dataset are
completely unaffected by the tracking system. There is no
specific support for blank nodes, nor is there for inference.

To restore the previous version (1nV), it is sufficient to

forget the last change, and replay the full history from the
empty dataset. However, the longer the sequence of patches,
the more computational demanding this operation is. An
alternative is to start from the working state (nV) and undo

the effect of the last change (nc), by applying its inverse

(1
nc), obtained by swapping additions and deletions.

The theory of patches also supports the undo of
intermediate changes in the history. To achieve that,
adjacent patches should be commuted, so that the relevant
change is moved to the last position, where it can be
reversed by applying its inverse. The key observation is that
two patches can be commuted freely, unless they conflict. A
conflict occurs between patches A and B, when A depends on a
triple added by B, or either deletes a triple added by the other.
Clearly, if two patches conflict, they cannot be reordered,
unless some conflict resolution strategy is employed. By
applying the same operations, it is possible to support
branching and then merging of different branches.

Im et al. (2012) describe a version management system
for RDF based on a relational representation. The system
only stores the latest version of graph, plus the delta for
reconstructing the previous one. A query against a previous
version is rewritten so that it utilises the current graph and
all deltas up to the right version. To reduce the response
time, Im et al. introduce the notion of aggregated delta,
which can be computed in advance between each pair of

versions. In this manner, the query should be rewritten using
the current graph and only one aggregated delta. Obviously,
this approach trades space occupation for response time.

Vander Sande et al. (2013) develop a versioned RDF
store on top of an arbitrary quad store, by relying on the
mechanism of named graphs to store individual changes.
Each change consists of two named graphs (one for the
additions and one for the deletions), as well as some
metadata describing the change itself. The identifier of a
change is externally unique, since it is based on the hash of
the change content. That enables a push/pull mechanism
similar to one found in distributed version control systems
for source code. There is no specific provisioning for blank
nodes. The system also supports branching and merging,
and conflicts are only determined at the structural level as
addition/deletion conflicts. The history can be purged and
deltas be rebased to shorten the history. A change is linked
to its parent, so that the state of the dataset after each change
can be easily reconstructed. Differently from Im et al.,
queries against an arbitrary version first require that the
relevant version is materialised beforehand.

Graube et al. (2014) describe a system similar to the one
presented by Vander Sande et al. Both use named graphs to
efficiently store deltas, and use RDF to describe individual
changes. However, this new work avoids the use of
hashmaps and other non-RDF structures. The system is
again a standalone versioning system, supporting branching
and merging. Its interface is based on an extension of
SPARQL with keywords added to reference specific
versions. While Vander Sande et al. uses a quad store to
version an individual graph, this work uses a quad store to
version a collection of graphs (although each graph is
versioned independently). Differently from Im et al., queries
against an arbitrary version first require that it is materialised
in a temporary named graph. To speed-up common scenarios,
the latest version of each graph is stored in the respective
named graph. Additionally, tagged versions are materialised
as well.

Halilaj et al. (2016) observe that some community-
driven datasets have already adopted GIT for their version
management needs. The perspective of these authors is on
vocabulary development, thus they propose a set of best
practices to extend (when necessary) GIT to meet the
requirements of collaborative vocabulary development.

In fact, they observe that GIT already meets some of
them, including flexible workflow support, branching and
tagging of versions. Text-based version control systems are
based on textual diff algorithms, which are known to have
problems with non-linear data such as RDF (Berners-Lee
and Connolly, 2001). In particular, Halilaj et al. commit on the
use of the Turtle syntax to sidestep the fact that editing tools
may produce arbitrary different representations of the same
graph because of differences in their writing algorithms.

Other requirements are met by other systems integrated in
the GIT ecosystem, such as JIRA (https://www.atlassian.com/
software/jira) and other issue tracking systems to support
communication and coordination. Halilaj et al. propose the
use of OWL2VCS (Zaikin and Tuzovsky, 2013) as a means
to compare two versions on a higher level than raw triples.
Other requirements can be met by a combination of native

 Change management and validation for collaborative editing of RDF datasets 151

functionality and purpose-built hook, i.e. scripts triggered upon
certain events, such as before and after a commit.

Arndt et al. (2016) designed the Quit Store (“Quads in
Git”), which implements a SPARQL 1.1 endpoint on top of a
GIT repository. In this system, the graphs in the dataset can be
mapped to different files in the repository. Like Halilaj et al.,
they contend that GIT can already track the evolution of RDF
datasets suitably serialised. In particular, the Quit Store stores
the data in alphabetically sorted N-Quads files. N-Quads is a
line-oriented syntax, particularly suitable for GIT, which
considers lines as the unit of comparison between textual files.
Furthermore, since blank nodes are not supported, sorting
guarantees that the serialisation is deterministic, and that
differences are not introduced accidentally by a simple
reordering of quadruples. Differently from Halilaj et al., users
are not intended to edit these serialisations by hand, while
they should submit updates to a SPARQL 1.1 endpoint
synchronised with the GIT repository. After a SPARQL
update, the Quit Store writes back the dataset to files and uses
the command git add ‐‐update, to create a new commit only if
some files were actually modified. Like Graube et al., the Quit
Store can handle multiple graphs, and furthermore it can handle
changes spanning over different graphs.

4 Change validation

In curated datasets, change validation is about reviewing
proposed changes to a dataset, in order to reject changes that
are deemed wrong, low-quality or otherwise not suitable to
make their way into the dataset. Differently, versioning
concerns recording and accessing different states of an
evolving dataset. Nonetheless, the two activities are related
in various ways, since validation can be defined on top of
the concepts and even the systems we described for version
control.

We first observe that change validation can be
implemented on top of any version control system supporting
branches. Indeed, Völkel (2006) shows that proposed changes
can be allocated to dedicated branches, while accepting
a change requires merging the corresponding branch into
the main development branch. This workflow is clearly
asynchronous in nature, since individual contributions happen
in isolated branches of the dataset, which are possibly merged
back in case of positive validation. Notably, rejected changes
do not affect the history of the main development copy, as it
is updated only because of the acceptance of changes.
An important downside of this asynchronous workflow is
that conflicts between changes by contributors working on
independent copies of the dataset are only identified later
on, upon the first attempt to merge them.

The notion of conflict is indeed another point of contact
between versioning and validation. Despite slight differences
between various notions of conflict, there is an agreement on
the idea of addition/deletion conflict at the structural level. Let
us consider, for example, the three-way merge of two states B
and C originated from a common state A. In this case, it
should not be possible for either B or C to remove a triple that is
added by the other (Vander Sande et al., 2013). However, such

conflicts cannot happen in our three-way merge scenario, if we
consider actual triple additions/deletions with respect to the
common ancestor A. In this setting, neither B nor C can delete a
triple that is added by the other, because either that triple was
present in the common ancestor A (thus addition is not
possible) or it was not (thus deletion is not possible).
Following Völkel and Groza (2006), we will discuss that a
similar addition/deletion conflict can happen at a higher
level. At the semantic level, we can identify other forms of
conflict, such as breaking the consistency and coherency of
the ontology being edited. In addition to structural and
consistency/coherency conflicts, there is a range of conflicts
that sit somehow in the middle, as they depend in part on the
specific modelling vocabularies and in part on the applications.

Let us consider the suggestion of a new label for an
ontology concept C, that is to say the addition of a triple
such as the following:

:C rdfs:label “concept C”@en .

Furthermore, let us assume that the concept C is removed
from the ontology before that suggestion is revised. In other
words, let us assume that any triple involving that concept is
deleted. Intuitively, it should not be possible anymore to
accept the label contribution, since the labelled class no
longer exists. Unfortunately, from a structural perspective
there is no conflict at all, since the contributed triple is not
among the triples deleted because of the deletion of the
concept C. This problem can be solved by relying on the
possibility (e.g. Cassidy and Ballantine, 2007) of adding a
condition to a change. Indeed, we may express that the
addition of a label depends on the fact that the subject
resource exists in the dataset. In our example, the simplest
way to require the existence of the concept C is to condition
the change on the triple C rdf:type rdfs:Resource (assuming
the ability of a reasoner to infer that anything that is locally
defined is at least a resource). Völkel and Groza (2006)
solve a similar problem in the context of three-way merge of
two branches: if a branch has deleted any mention of a
resource, that resource is considered deleted, therefore the
other branch is not allowed to add new mentions of
that resource, otherwise producing a higher-level addition/
deletion conflict.

Change validation does not necessarily require the use of
branches, and it can be implemented in synchronous workflows
as well, when all contributors work simultaneously on the same
working copy of the dataset. This is a form of continuous
integration that reduces the risk of subsequent conflicts,
although they are not completely removed. In this synchronous
workflow, we no longer maintain separate copies of the dataset
for each contribution, but rather we are interested in recording
the changes applied to a dataset, so that they can be evaluated
and, if necessary, reversed.

Most version control systems for RDF use a delta-
compressed representation of the history of a branch, so it is
relatively easy to determine what has changed because of
a committed change. Auer and Herre (2007) suggest to
implement arbitrary change rollback, by checking the
compatibility of a change with a version of a graph different
from the one the change was originally created.

152 M. Fiorelli et al.

A change can be reversed easily, by creating a new
change, a sort of inverse change, that undoes its effects, by
swapping additions and deletions of triples. Actually, the
application of the inverse change may fail because of a
conflict, when a subsequent change somehow overwrote the
one we want to reject. Actually, it is right that the change
can no longer be rejected. In fact, it may be the case that a
change is not atomic (e.g. it adds two classes), and it may be
the case that the conflict arises only because of a part of the
change. In such cases, we can exploit the ability (previously
discussed) of decomposing a change into cohesive changes,
which can be independently rejected.

In this scenario, reversing a change results in another
change being registered by the version control system. In a
certain sense, a change and its inverse share the same nature,
and thus we could even undo the undo of a change, and so on.
In fact, we advise in favour of adding some metadata to tell the
difference between these two types of change.

As discussed in the previous section, Cassidy and
Ballantine (2007) shift the focus from version management to
change management, by adopting the theory of patches. The
system manages the sequence of patches that lead to the current
working state of a dataset. When the changes are not
conflicting, they can be reordered freely, therefore the sequence
is in fact a set of changes, which can be rejected independently.

A similar interest in change management can be recognised
in many collaborative editors, such as VocBench 2 (Stellato
et al., 2015), VocBench 3 (Stellato et al., 2017), PoolParty
(https://www.poolparty.biz/), TopBraid EVN (https://www.
topquadrant.com/products/topbraid-enterprise-vocabulary-net/)
and Protégé (Noy et al., 2006). The additions of collaboration
features to Protégé have eventually led to its web-based
incarnation (Tudorache et al., 2013).

The management of changes clearly presupposes these
to be identified in the first place. To this end, there are
two main strategies: monitored vs non monitored. Protégé
supports both approaches (Tudorache et al., 2008), while
VocBench 2/3, TopBraid EVN and PoolParty mainly
support the monitored approach. The monitoring of changes
consists in recording the changes as they are produced.
Usually, it requires the instrumentation of the editing
environment or a low-level middleware to intercept and
record individual editing actions. Without monitoring, there
are only two versions (before and after the modification),
and then a comparison function is used to compute the
difference. If the second version of the dataset contains
numerous modifications, we must break down the triple-
based difference into numerous more cohesive changes, so
that they can be analysed independently.

A general argument in favour of a monitored solution is
its higher efficiency, since comparing two large RDF graphs
can be computationally expensive (no wonder that among
the above cited tools, the one supporting non monitored
changes is meant to support ontology development, while
the other two deal with large thesauri). Moreover, the
transactional boundaries of an application offer a natural
criterion for defining atomicity of changes. In fact, it may be
useful to further decompose changes into hierarchies, so that
it is possible to analyse the changes at different levels of

detail. Another advantage of the monitored approach is
that individual changes are identified early on, so that it
is possible to annotate them and, in some cases, start
discussions about them.

One disadvantage of the monitored scenario is that changes
naturally occur in a temporal sequence, and it may happen that
subsequent changes are redundant, possibly conflicting. As an
example, let us consider a team of maintainers working
simultaneously on the same ontology. If the maintainers are in
disagreement, a same class might happen to be repeatedly
added and deleted. These changes are both conflicting and
redundant, and would pollute the list of changes pending for
acceptance. It is a matter of policy, whether the system should
react to these problematic cases or the application should
prevent such cases to occur in the first place.

VocBench, PoolParty and Protégé (in the monitored
configuration) share a similar architecture. All users work
simultaneously on the same data, while changes are tracked
and stored. All of the systems record high-level changes.
VocBench 2 models changes as a Java class hierarchy, and
stores the objects representing individual changes into a
separate relational database. VocBench 3 represents changes
as RDF data in a support triple store. In VocBench 2,
the addition of a new mutation operation was usually
accompanied by the addition of a new class to represent its
occurrences in the history. Additionally, it was necessary to
add an explicit inverse operation, which can be used by the
validation subsystem to undo the effects of an execution of
the new operation. Conversely, VocBench 3 represents any
change in terms of triple additions and deletions together
with metadata telling the name of the operation, its
arguments, the user who invoked the operation and the
timestamp of the change. Furthermore, the undo of a change
is performed uniformly by swapping additions and deletions
of triples. PoolParty represents the changes in RDF together
with the data in a dedicated named graph, by relying on the
ChangeSet (Tunnicliffe and Davis, 2005) ontology. As
already discussed, Protégé stores the changes in RDF using
the ChAO ontology (like PoolParty), but separately from the
data (like VocBench).

TopBraid EVN has a flexible architecture, supporting
different approaches to validation. Like other systems,
TopBraid EVN records individual changes to a dataset as
they are performed by users using the Teamwork ontology.
Undo of a change consists in the application of its inverse,
which is recorded in the history. Although different users
can work concurrently on the same workspace, TopBraid
EVN supports the creation of multiple working copies. In a
typical scenario, different contributors work on different
working copies, which can be frozen for review, when it is the
time merge them into the (master) production copy. While the
history of a working copy can contain overlapping changes
(e.g. a property of a resource is first set to a value and then to a
different one), the validator performing the merge can obtain a
comparison report containing only the actual differences
between the production copy and the working copy (like in
the non-monitored scenario).

The change tracking capability of these tools is valuable in
its own, but it is interesting mostly because it allows a form of

 Change management and validation for collaborative editing of RDF datasets 153

validation. Protégé has followed the path to integrate many
communication and coordination facilities, aimed at forming
consensus. For instance, it is possible to annotate changes,
discuss them and even vote on a change. VocBench, on
the other hand, follows a different approach, because
communication is performed externally by means of Wikis,
issue management systems, etc... Again, TopBraid EVN is
hybrid, since it supports some internal discussion mechanisms,
while also offering the integration with external systems.

5 Conclusions

We have performed a landscape analysis of RDF version
control systems and approaches, focusing on the demands of
collaborative and iterative development processes. Under
this perspective, the controlled rejection of individual
changes is very important, especially in the context of
curated datasets, in which proposed changes must undergo
an explicit acceptance process.

We observed that change validation is complementary to
the need for discrete snapshots of a dataset, and that it can
be realised on top of different strategies for version control.
We first remarked that in asynchronous workflows
validation can be implemented in terms of selective merging
of changes into the main development copy of a dataset.
Differently, in synchronous workflows changes are already
applied to the dataset, therefore validation should be based
on an explicit undo mechanism. By shifting the focus of the
management from versions to changes, we observed that it
is possible to implement this synchronous workflow in a
clearer manner. Finally, we observed that this is the path
that many collaborative editing environments for RDF have
followed.

Acknowledgements

This work was partially funded by the European Commission
ISA² programme in the context of the development of
VocBench 3 (VB3), which is managed by the Publications
Office of the EU under the contract 10632 (Infeurope S.A.).

References

Alexander, K., Cyganiak, R., Hausenblas, M. and Zhao, J. (2011)
Describing Linked Datasets with the VoID Vocabulary (W3C
Interest Group Note). Available online at: http://www.w3.org/
TR/void/ (accessed on 16 May 2012).

Arndt, N., Radtke, N. and Martin, M. (2016) ‘Distributed
collaboration on RDF datasets using git: towards the quit
store’, Proceedings of the 12th International Conference on
Semantic Systems, ACM, New York, NY, USA, pp.25–32.

Auer, S. and Herre, H. (2007) ‘A versioning and evolution
framework for RDF knowledge bases’, Virbitskaite, I. and
Voronkov, A. (Eds): Perspectives of Systems Informatics
(Lecture Notes in Computer Science), Vol. 4378, pp.55–69.

Berners-Lee, T. (2006) Linked Data. Available online at:
https://www.w3.org/DesignIssues/LinkedData.html

Berners-Lee, T. and Connolly, D. (2001) Delta: an ontology for
the distribution of differences between RDF graphs. Available
online at: https://www.w3.org/DesignIssues/Diff (accessed on
29 March 2016).

Berners-Lee, T. and Connolly, D. (2011) Notation3 (N3): A readable
RDF syntax. Available online at: https://www.w3.org/
TeamSubmission/n3/

Berners-Lee, T., Hendler, J.A. and Lassila, O. (2001) ‘The
semantic web: a new form of web content that is meaningful
to computers will unleash a revolution of new possibilities’,
Scientific American, Vol. 284, No. 5, pp.34–43.

Carroll, J.J., Bizer, C., Hayes, P. and Stickler, P. (2005) ‘Named
graphs, provenance and trust’, WWW’05: Proceedings of the
14th international conference on World Wide Web, ACM
Press, New York, NY, USA, pp.613–622.

Cassidy, S. and Ballantine, J. (2007) ‘Version control for RDF
triple stores’, in Filipe, J., Shishkov, B. and Helfert, M. (Eds):
ICSOFT 2007, Proceedings of the Second International
Conference on Software and Data Technologies, Volume
ISDM/EHST/DC, Barcelona, Spain, 22–25 July, pp.5–12.

Cyganiak, R., Wood, D. and Lanthaler, M. (2014) RDF 1.1 Concepts
and Abstract Syntax. Available online at: https://www.w3.org/
TR/rdf11-concepts/

Fiorelli, M., Pazienza, M.T., Stellato, A. and Turbati, A. (2017)
‘Version control and change validation for RDF datasets’, in
Garoufallou, E., Virkus, S., Siatri, R. and Koutsomiha, D. (Eds):
Metadata and Semantic Research (Communications in Computer
and Information Science), Vol. 755, Springer, Cham, pp.3–14.

Graube, M., Hensel, S. and Urbas, L. (2014) ‘R43ples: revisions for
triples – an approach for version control in the semantic web’,
Proceedings of the 1st Workshop on Linked Data Quality Co-
located with 10th International Conference on Semantic Systems,
LDQ@SEMANTiCS 2014, Leipzig, Germany, 2 September.

Halilaj, L., Grangel-González, I., Coskun, G., Lohmann, S. and Auer,
S. (2016) ‘Git4Voc: collaborative vocabulary development based
on git’, International Journal of Semantic Computing, Vol. 10,
No. 2, pp.167–191.

Heath, T. and Bizer, C. (2011) ‘Linked data: evolving the web into
a global data space’, Synthesis Lectures on the Semantic Web:
Theory and Technology, Vol. 1, No. 1, pp.1–136.

Hodge, G. (2000) Systems of Knowledge Organization for Digital
Libraries: Beyond Traditional Authority Files, Council on
Library and Information Resources, Washington, DC.

Hogan, A., Arenas, M., Mallea, A. and Polleres, A. (2014)
‘Everything you always wanted to know about blank nodes’,
Web Semantics: Science, Services and Agents on the World
Wide Web, Vols. 27–28, pp.42–69.

Im, D.-H., Lee, S.-W. and Kim, H.-J. (2012) ‘A version management
framework for RDF triple stores’, International Journal of
Software Engineering and Knowledge Engineering, Vol. 22,
No. 1, pp.85–106.

Kiryakov, A. and Ognyanov, D. (2002) ‘Tracking changes in
RDF(S) repositories’, in Omelayenko, B. and Klein, M. (Eds):
Proceedings of the Workshop on Knowledge Transformation
for the Semantic Web KTSW 2002. Workshop W7 at the 15-th
European Conference on Artificial Intelligence, 23 July,
Lyon, France, pp.27–35.

Klein, M., Fensel, D., Kiryakov, A. and Ognyanov, D. (2002)
‘Ontology versioning and change detection on the web’, in
Gómez-Pérez, A. and Benjamins, V.R. (Eds): Knowledge
Engineering and Knowledge Management (Lecture Notes in
Computer Science), Vol. 2473, Springer, Berlin, Heidelberg,
pp.197–212.

154 M. Fiorelli et al.

Noy, N.F., Chugh, A., Liu, W. and Musen, M.A. (2006) ‘A framework
for ontology evolution in collaborative environments’, in Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P. et al.
(Eds): The Semantic Web – ISWC 2006 (Lecture Notes in
Computer Science), Vol. 4273, Springer, Berlin, Heidelberg,
pp.544–558.

Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D. and
Christophides, V. (2009) ‘On detecting high-level changes in
RDF/S KBs’, in Bernstein, A., Karger, D.R., Heath, T.,
Feigenbaum, L., Maynard, D., Motta, E. et al. (Eds): The
Semantic Web – ISWC 2009 (Lecture Notes in Computer
Science), Vol. 5823, Springer, Berlin, Heidelberg, pp.473–488.

Seaborne, A. and Davis, I. (2010) ‘Supporting change propagation
in RDF’, Proceedings of the W3C Workshop – RDF Next
Steps, 26–27 June, Stanford, Palo Alto, CA, USA.

Shadbolt, N., Berners-Lee, T. and Hall, W. (2006) ‘The semantic web
revisited’,IEEE Intelligent Systems, Vol. 21, No. 3, pp.96–101.

Stellato, A., Rajbhandari, S., Turbati, A., Fiorelli, M., Caracciolo,
C., Lorenzetti, T. et al. (2015) ‘VocBench: a web application
for collaborative development of multilingual thesauri’, in
Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-
Mauroux, P. and Zimmermann, A. (Eds): The Semantic Web.
Latest Advances and New Domains (Lecture Notes in
Computer Science), Vol. 9088, Springer, Cham, pp.38–53.

Stellato, A., Turbati, A., Fiorelli, M., Lorenzetti, T., Costetchi, E.,
Laaboudi, C. et al. (2017) ‘Towards VocBench 3: pushing
collaborative development of thesauri and ontologies further
beyond’, in Mayr, P., Tudhope, D., Golub, K., Wartena, C. and
De Luca, E.W. (Eds): 17th European Networked Knowledge
Organization Systems (NKOS) Workshop, Thessaloniki, Greece,
21 September, pp.39–52.

Tudorache, T., Noy, N.F., Tu, S. and Musen, M.A. (2008) ‘Supporting
collaborative ontology development in protégé’, in Sheth, A.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T. et al.
(Eds): The Semantic Web - ISWC 2008 (Lecture Notes in
Computer Science), Vol. 5318, Springer, Berlin, Heidelberg,
pp.17–32.

Tudorache, T., Nyulas, C., Noy, N.F. and Musen, M.A. (2013)
‘WebProtégé: a collaborative ontology editor and knowledge
acquisition tool for the web’, Semantic Web, Vol. 4, No. 1,
pp.89–99.

Tunnicliffe, S. and Davis, I. (2005) Changeset. Available online at:
http://vocab.org/changeset/ (accessed on 29 March 2016).

Vander Sande, M., Colpaert, P., Verborgh, R., Coppens, S., Mannens,
E. and Van de Walle, R. (2013) ‘R&W base: git for triples’, in
Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M. and Auer,
S. (Eds): Proceedings of the WWW2013 Workshop on Linked
Data on the Web, Rio de Janeiro, Brazil, 14 May.

Völkel, M. (2006) D2.3.3.v2 SemVersion – Versioning RDF and
Ontologies, EU-IST Network of Excellence (NoE) IST-2004-
507482 KWEB.

Völkel, M. and Groza, T. (2006) ‘SemVersion: an RDF-based
ontology versioning system’, in Isaías, P., Nunes, M.B. and
Martínez, I.J. (Eds): Proceedings of the IADIS International
Conference on WWW/Internet, Murcia, Spain, 5–8 October,
pp.195–202.

W3C (2004) Resource Description Framework (RDF). Available
online at: http://www.w3.org/RDF/

W3C (2008) SPARQL Query Language for RDF. Available online
at: https://www.w3.org/TR/rdf-sparql-query/ (accessed on
15 November 2017).

W3C (2009) OWL 2 Web Ontology Language. Available online at:
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

Wikipedia contributors (2017) Management Science. Available
online at: https://en.wikipedia.org/wiki/Management_science
(accessed on 15 December 2017).

Zaikin, I. and Tuzovsky, A. (2013) ‘Owl2vcs: tools for distributed
ontology development’, in Rodriguez-Muro, M., Jupp, S. and
Srinivas, K. (Eds): Proceedings of the 10th International
Workshop on OWL: Experiences and Directions (OWLED 2013)
co-located with 10th Extended Semantic Web Conference (ESWC
2013), Montpellier, France, 26–27 May.

